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Introduction

Sandwich construction has been used in aircraft
applications over the last 40 years because of its light
weight, high bending rigidity, and good fatigue proper-
ties (ref. 1). However, debonding of the faceskin from
the core, which can be by impact damage or defects in
the manufacturing process, significantly degrades sand-
wich construction performance. In particular, debonding
can significantly affect the compression stability and
strength of the sandwich structure. Moreover, the pres-
ence of debonding is a major concern in sandwich struc-
tures because the debonded region may grow under
compression (ref. 2).

There have been several studies on the buckling of
debonded sandwich and delaminated composite struc-
tures loaded under compression (refs. 2–8). Webster
investigated the buckling loads of composite laminates
with circular debond defects using the Rayleigh-Ritz
method (ref. 3). Chai et al. (refs. 4 and 5) studied buck-
ling and postbuckling of delaminated composite plates
by modeling the failure in one and two dimensions. Hwu
and Hu (ref. 2) and Somers et al. (ref. 6) derived closed-
form solutions to study the buckling and postbuckling of
delaminated sandwich beams. They applied elastic frac-
ture mechanics (LEFM), using J-integral and Griffith cri-
terion to compute strain energy release rates for
predicting debond growth. Vizzini and Lagace (ref. 7)
studied sublaminate delamination in composite lami-
nates. In their approach, a one-dimensional (1-D) model
of a delaminated sublaminate was developed in which
the sublaminate rested on an elastic foundation that mod-
eled the resin layer. The buckling load of the sublaminate
was predicted using the Rayleigh-Ritz energy method.
Kim and Dharan (ref. 8) used the approach developed by
Vizzini and Lagace with LEFM to study faceskin deb-
onding for composite sandwich panels.

This paper examines a sandwich panel with initial
through-the-width debonds between the faceskin and
sandwich foam core. (See fig. 1.) The buckling load of
the panel is computed from a 1-D model, which models a
sandwich panel strip as a beam (faceskin) on an elastic

foundation (core material), and a two-dimensional (2-D)
model, which models the cross section of the panel. The
Rayleigh-Ritz and finite-difference methods are used to
analyze the 1-D model, while the finite-element method
using 4-node quadrilateral plane-strain elements is used
to analyze the 2-D model.

Although many investigators used the 1-D beam-on-
elastic-foundation model to study the sandwich panel
debond problem, little research has been performed (to
the authors’ knowledge) to assess the adequacy of mod-
eling the foam core material as elastic springs by more
accurate analysis methods, such as finite-element analy-
sis. In the finite-element model, the foam core material is
modeled as an isotropic material. Therefore, because the
finite-element model properly includes the behavior of
the faceskin and foam core, more accurate predictions of
buckling will result.

This paper presents three different numerical meth-
ods (Rayleigh-Ritz, finite-difference, and finite-element)
for determining the buckling load of a sandwich panel
with initial through-the-width debonds. Parametric stud-
ies investigating the effects of sandwich foam stiffness
and debond length on the buckling load of the debonded

Figure 1.  Debonded sandwich panel.
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Abstract

A sandwich panel with initial through-the-width debonds is analyzed to study the
buckling of its faceskin when subject to an in-plane compressive load.  The debonded
faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of
the elastic foundation represent the sandwich foam.  The Rayleigh-Ritz and finite-
difference methods are used to predict the critical buckling load for various debond
lengths and stiffnesses of the sandwich foam.  The accuracy of the methods is assessed
with a plane-strain finite-element analysis.  Results indicate that the elastic founda-
tion approach underpredicts buckling loads for sandwich panels with isotropic foam
cores.
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faceskin are performed. Finally, the assumption of using
the elastic foundation approach to model the foam core is
evaluated by comparing the Rayleigh-Ritz and finite-
difference results from the 1-D elastic beam foundation
model to the results from the 2-D plane-strain finite-
element model.

Numerical Methods for Determining Buckling
Load

As previously mentioned, the Rayleigh-Ritz, finite-
difference, and finite-element methods were used to ana-
lyze the buckling of the debonded sandwich panel.  In the
Rayleigh-Ritz and finite-difference methods, a sandwich
panel strip was modeled as a beam on an elastic founda-
tion. In the finite-element method, 2-D plane-strain quad-
rilateral elements were used to model the cross section of
the debonded sandwich panel.

Beam-on-Elastic-Foundation Model

Figure 2(a) shows a strip of unit widthb of the sand-
wich panel loaded in compression with symmetric
through-the-width debonds between the faceskins and
core. The debonded region of lengthld is located in the
middle of the sandwich panel, and the applied compres-

sive load isP, as shown in figure 2(b).  The thickness of
the faceskins is denoted bytb, and the thickness of the
sandwich core is denoted by 2tf. Due to symmetry, only
the upper half of the sandwich panel strip of lengthL is
modeled, as shown in figure 3.  The Young’s modulus
and the moment of inertia of the faceskins are denoted by
Eb and , respectively.  The bonded regionslf
have foundation support.  The faceskin, modeled as a
beam, is partially supported by an elastic foundation with
modulusk and has simple supported boundary conditions
at its ends.

Rayleigh-Ritz method.The total potential energy of
the beam-on-elastic-foundation system is expressed as

(1)

whereUm andUb are membrane and bending energies,
respectively,Uf is the potential energy of the elastic
foundation, andΩ is the potential energy of the compres-
sive loadP.  These energy terms are defined as

(2a)

(2b)

(2c)

(2d)

whereA is the cross-sectional area of the faceskin and ,
and  are the longitudinal and out-of-plane deflections,
respectively (ref. 9).  The extensional strain of the face-
skin can be written as

(3)

Introduction into equation (1) gives

(4)

The elastic foundation modulusk(x) in equation (2c) is
given by

(5)

(a)  Sandwich beam with initial symmetric debonded regions
between core and faceskin.

(b)  Buckled shape of sandwich beam.

Figure 2.  Buckling of debonded sandwich panel strip modeled as a
beam on an elastic foundation.
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whereK is a constant and can be represented asEf b/tf
and Ef is the Young’s modulus of the sandwich foam
core.  The variableψ(x) is defined as

(6)

For stability of a system in equilibrium, the second
variation of potential energy needs to be positive
semidefinite,

(7)

When the second variation of potential energy is zero, a
neutral equilibrium configuration exists and indicates the
onset of buckling. This point is characterized as the
bifurcation point (ref. 10). The Trefftz criterion states
that equation (7) is identically satisfied when the varia-
tion of the second variation is zero (ref. 11).

The expression forδ2Π is obtained by perturbing the
system in equation (4) such that

(8)

whereu0 andw0 represent the prebuckling configuration
and the variationsu(x) andw(x) are infinitesimally small
increments. For the prebuckling configuration,

(9)

Introducing equations (8) and (9) into equation (4),
assuming inextensional buckling (i.e.,u = 0), and collect-
ing the second-order  terms gives the second variation of
the potential energy:

(10)

In the Rayleigh-Ritz method, the out-of-plane defor-
mation at the onset of bucklingw of the panel faceskin is
approximated as

(11)

whereφm are selected functions that satisfy the geometric
boundary conditions andAm represents their amplitudes.
For simple support boundary conditions, a sinusoidal
function is used:

(12)

The Trefftz criterion used with the Rayleigh-Ritz
method to determine the buckling load can be written as

(13)

Dimensional parameters are nondimensionalized by
the lengthL as follows:

(14)

Figure 3.  Elastic foundation model of debonded sandwich beam.
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The variableη is the foundation ratio, where a value
of zero is equivalent to a faceskin (beam) with no foun-
dation (unsupported) and a value of one-half is equiva-
lent to a fully supported faceskin (beam). The variableµ
is the debond ratio and represents the fractional amount
of the strip which is debonded. The functionsφm in equa-
tion (12) andψ in equation (6) become  and ,
respectively, after the nondimensionalized parameters in
equation (7) are used. Incorporating equation (13) gives
the eigenvalue problem:

(15)

where the matrix elements are

(16a)

(16b)

(16c)

and

(17a)

(17b)

The terms  andF are, respectively, the dimensionless
load and foundation stiffness parameters. Solving equa-
tion (15) for the largest eigenvalueλ yields the lowest
buckling loadPcr.

Finite-difference method.An alternative method for
examining the elastic stability of a sandwich debond is

the finite-difference method (ref. 10). The governing
equations at the onset of buckling are

(18)

In this method,N + 4 discrete evenly spaced gridpoints
x−1 to xN+2 are used with spacing∆ as shown in figure 4.
Derivatives ofw are approximated by

(19)

with simply supported boundary conditions

(20)

Substituting equation (19) into equation (18) for points
x1 to xN along with the boundary conditions in equa-
tion (20) providesN + 4 simultaneous algebraic equa-
tions for w−1 to wN+2. The nontrivial solution for the
buckling load is represented by the lowest value ofP for
which the determinant of the coefficients of theN alge-
braic equations vanishes (ref. 9).

Finite-Element Model

Plane-strain finite-element analysis.Due to sym-
metry about the panel’s half-length (x = L/2) and thick-
ness, only a quarter of the debonded sandwich panel
cross section was modeled by 4-noded quadrilateral
assumed natural-coordinate strain (ANS) finite elements,
as shown in figure 5 (refs. 12 and 13). The element is
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based on a Mindlin/Reissner shell formulation. Eight
layers of 4-noded quadrilateral finite elements are used
to model the faceskin and sandwich foam regions.
Duplicate nodes for the faceskin and core at their com-
mon boundary along the debonded region created the
debonded region between the faceskin and core. (See
fig. 6.) These duplicate nodes are allowed to translate
independently.

A linear stability analysis was performed using
NASA Langley Research Center’s COmputational
MEchanics Testbed (COMET) code (ref. 12) to compute
the buckling load of the debonded panel. The linear elas-
tic stability analysis in COMET is formulated using the
concept of adjacent equilibrium. Buckling occurs when
the membrane strain energy is converted to bending
strain energy in the adjacent equilibrium configuration.

Figure 5.  Two-dimensional plane-strain finite-element model.

Figure 6.  Local buckled region of debonded faceskin of sandwich panel strip.
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The linear elastic stability analysis reduces to an eigen-
value analysis to find the bifurcation from the membrane
state to the bending state. The eigenvalue satisfies

(21)

where

K assembled linear elastic stiffness matrix

Kg(σ) assembled geometric stiffness matrix

φi ith eigenvector or mode shape

λi ith eigenvector or buckling load factor

.

Results and Discussion

Three analytical methods were used to calculate the
buckling load of the debonded sandwich panel strip,
which consisted of an aluminum faceskin and a foam
core. Parametric studies were performed to study how

changes in debond length, core moduli, and Poisson’s
ratios affect the buckling load. Tables 1 and 2 summarize
the data used in the analyses for the Rayleigh-Ritz and
finite-difference methods and the plane-strain finite-
element analyses. The subscripts (i, j = 1, 2) forEbij and
Efij  are along thex- andz-directions, respectively. In gen-
eral, the aluminum faceskin and foam core are treated as
isotropic materials. However, to simulate the Winkler
foundation theory using finite-element analysis, the
Poisson’s ratios and the foam longitudinal stiffness
(x-direction) were given reduced constitutive properties.
The Poisson’s ratios of the faceskin and core,νb andνf,
were set to 0, and Young’s modulus of the sandwich
foam,Ef 11, was set to approximately  0 (10−4) psi. The
reduction of constitutive properties allowed evaluation of
the effects of the simplifying assumptions of the elastic
foundation approach. In addition, the tests evaluated the
effects of transverse shear.

Table 1.  Geometric and Material Properties

Length of sandwich beamL, in.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.0

Young’s modulus of beam faceskinEb, psi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.0× 106

Elastic foundation modulusK, psi. . . . . . . . . . . . . . . . . . . . . . . . . . . Variable from 0 to 12500

Thickness of faceskintb, in.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2

Thickness of coretf, in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8

Table 2.  Constituent Properties of Finite-Element Model

(a) Set 1

Aluminum faceskin (isotropic):

Eb11 = Eb22 = Eb, psi  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.0× 106

Poisson ratio,νb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.30

Shear modulus,Gb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Core (isotropic):

Ef 11 = Ef 22 = Ef , psi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variable from 0 to 10000

Poisson ratio,νf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.30

Shear modulus,Gf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Set 2

Aluminum faceskin (reduced):

Poisson ratio,νb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

Core (reduced):

Ef 11, psi  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10−4

Poisson ratio,νf  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

K φi λiK g σ( )φi+ 0= i 1 2 …, ,=( )

Eb

2 1 νb+( )
-----------------------

Ef

2 1 ν f+( )
-----------------------
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Effect of Sandwich Foam Stiffness on Buckling
Load

Rayleigh-Ritz method.The Rayleigh-Ritz method
was used to perform a parametric study of variations in
the foundation stiffness of the core. The dimensionless
foundation stiffnessF varied from 0 (no core stiffness) to
a typical foam core stiffness of 30.0 (K = 12500 psi) for a
specific value of the debond ratioµ.  The debond length
was fixed at 2.0 in., orµ = 0.067 in.  The results from this
study are presented in terms of the relative buckling
loadPcr /PE wherePE denotes the Euler buckling load
(π2EbI/L2) of the debonded faceskin.

A plot of Pcr /PE versusF in figure 7 shows the con-
vergence of the Rayleigh-Ritz method as the number of
shape functions is increased. As expected, the buckling
load of the debonded sandwich panel strip increases as
the foundation stiffness increases. Twenty-five terms in
the Fourier sine series were sufficient to obtain a con-
verged solution.

Finite-difference method. The finite-difference
method was also used to predict the buckling load. Fig-
ure 8 illustrates the convergence of buckling load as the
number of gridpoints is increased when using the finite-
difference method. Because the finite-difference method
discretely models the elastic foundation as a series of
closely spaced springs, a large number of gridpoints are

required for a convergent solution. As a result, conver-
gence is slower than the Rayleigh-Ritz method. In addi-
tion, the solution procedure of this method was
inefficient because the buckling load could not be solved
for directly as in the Rayleigh-Ritz method. Instead, the
buckling load was determined by using successive itera-
tions of the bisection method until a root of the polyno-
mial equation was found (ref. 14). A change of sign of
the determinant of the coefficients in the algebraic equa-
tions indicates a root (buckling load) between two suc-
cessive iterations. Due to the length of the computational
time for this analysis, 360 gridpoints were used as the
final solution despite the lack of full convergence.

Finite-element method.The 2-D plane-strain finite-
element model shown in figure 5 was analyzed using
4-noded quadrilateral elements. The finite-element
model consisted of 1280 elements and 1385 nodes for a
symmetric model. Duplicate nodes are used to model the
debonded region. Two eigenvalue analyses were
performed using this model. In the first analysis, the
aluminum faceskin and foam core were assumed to be
isotropic with the properties shown in table 2. The finite-
element results from the isotropic case (atF = 30.0)
are about 20 percent higher than those from the
Rayleigh-Ritz and finite-difference analyses, as shown in
figure 9.  This difference increases as the foundation
stiffness increases.

Figure 7.  Convergence of relative buckling load using Rayleigh-Ritz method.
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This discrepancy may have been induced by model-
ing the core material as a Winkler foundation in which
the elastic springs represent the core. To verify that the

discrepancy is caused by the simplifying assumptions
of the elastic foundation approach, a second finite-
element analysis was performed with reduced constituent

Figure 8.  Convergence of relative buckling load using finite-difference method.

Figure 9.  Comparisons of relative buckling load results from different methods for variations in foundation stiffness.
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properties.  The Poisson’s ratios of the aluminum face-
skin and foam core,νb andνf, were set to 0, and Young’s
modulus of the foam,Ef 11, was set to approximately 0
(10−4) psi. This reduction of the material properties elim-
inates the effects of the Poisson’s ratios and the longitu-
dinal stiffness of the core. Figure 9 shows a comparison
of the second set of finite-element results with the
Rayleigh-Ritz and finite-difference methods. Excellent
agreement is observed between the finite-element analy-
sis using the reduced material properties and the results
from the Rayleigh-Ritz and finite-difference methods.

Effect of Debond Length on Buckling Load

In a second parametric study, the debond ratioµ was
varied from 0 (fully bonded) to 1 (fully debonded) for a
fixed value ofF = 30.0 (K = 12500 psi). The limiting
value ofµ = 0 yields the buckling load for a sandwich
panel strip with no debonds, and a value ofµ = 1 yields
the Euler buckling loadPE for a fully debonded faceskin.
The results are presented in figure 10 in terms of the nor-
malized buckling loadPcr /PFULL, which is the ratio of
the buckling load divided by the buckling load of a beam
fully supported by an elastic foundation (ref. 10):

(22)

where n is the number of half sine waves required to
give the lowest buckling load, depending upon the
parameters.

Fifty terms in the Rayleigh-Ritz method and
360 gridpoints in the finite-difference method were used
in this study. In the finite-element analysis, two sets of
constituent properties were again used. Set 1 used isotro-
pic properties and Set 2 used reduced constituent proper-
ties (νf12 = νb12 = 0, Ef11 ≈ 0). The results in figure 10
show that the normalized buckling load decreases asµ
increases, indicating that the buckling load for the unsup-
ported skin decreases as the debonded length increases.
The results from the isotropic plane-strain finite-element
analysis are about 10–20 percent higher (depending on
the debond length) than those predicted by the Rayleigh-
Ritz and finite-difference methods. This suggests that the
simplifying assumptions on Poisson’s ratio and the longi-
tudinal stiffness of the core can substantially affect buck-
ling load predictions. However, excellent agreement is
observed once these properties are reduced.

Effect of Transverse Shear on Buckling Load

Transverse shear effects were found to be insignifi-
cant for the studies performed in this paper. From equa-
tion (4.76) in reference (ref. 10), the buckled fully
bonded faceskin is calculated to have a wavelength
of 2.68 in. for the largestK considered in this study
(12500 psi).  This corresponds to ald/tb ratio of 13.4,
which is estimated to contribute less than 2-percent error
for the buckling load of the debonded faceskin using ref-
erence (ref. 15). Therefore, transverse shear effects were
not considered in the Rayleigh-Ritz and finite-difference
analyses.
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Figure 10.  Comparisons of normalized buckling load results from different methods for various debond ratios andF = 30.0.

Debond ratio, µ 
1.0.8.6.4.20

.2

.4

.6

.8

1.0

1.2

AAAAA
AAAAA

ld

AAAAAAAAAAAA

N
or

m
al

iz
ed

 b
uc

kl
in

g 
lo

ad
, P

cr
 /P

F
U

L
L

Finite difference
Finite-element analysis (isotropic)

Rayleigh-Ritz

Finite-element analysis (υb = υf = 0, Ef 11 ≈ 0)

30.0 in.

0.2 in.

0.8 in.

F

Eb = 1.0 × 107 psi



10

Conclusions

Three numerical methods were used to analyze the
buckling of a debonded aluminum faceskin on a sand-
wich panel with a foam core. The Rayleigh-Ritz and
finite-difference methods were used to study a 1-D
beam-on-elastic-foundation model that represents a strip
of a sandwich panel with a through-the-width debond.
The results were compared with the buckling loads cal-
culated from a 2-D finite-element analysis using 4-noded
quadrilateral plane-strain elements. Two parametric stud-
ies were performed to evaluate the effects of the elastic
foundation stiffness and debond length. Results from the
three analytical methods were compared and discussed.
As expected, the results showed that the buckling load
increases with increasing core foundation stiffness and
decreases with increasing debond length.

The Rayleigh-Ritz method was shown to be superior
to the finite-difference method in obtaining the buckling
loads because it requires less computational time and
exhibits fast convergence. However, both the Rayleigh-
Ritz and finite-difference methods assumed a Winkler
core foundation and, thus, ignored the Poisson’s ratio and
longitudinal stiffness effects of the core material. Results
from the Rayleigh-Ritz method and the finite-difference
method, which are based on the elastic foundation
approach, show lower buckling loads than those pre-
dicted by the 2-D plane-strain finite-element analysis,
which models the sandwich foam core as an isotropic
material. When the core is forced to behave as a Winkler
foundation so that the Poisson’s ratios of the core are set
to 0 and its longitudinal stiffness is reduced to be infini-
tesimally small, the finite-element analysis agrees with
the results from the Rayleigh-Ritz and finite-difference
methods. Therefore, to accurately predict the buckling
load of a debonded sandwich panel with sandwich foam
cores, a finite-element model that includes the Poisson’s
ratio and longitudinal core stiffness should be used.

NASA Langley Research Center
Hampton, VA 23681-0001
October 16, 1995
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